OBR - Projekt 3

Opis:

Silnik cieplny gazowo-parowy.

Silnik cieplny gazowo-parowy (SCGP), maksymalizuje przetwarzanie energii cieplnej w mechanicznš. Do komory spalania obok podawanego paliwa wtryskiwana jest (w okolicach górnego martwego punktu) bardzo goršca woda (podgrzana korpusem silnika i układem wydechowym) o temperaturze około 400 stopni Celsjusza. Zamienia się ona po wtrysku natychmiast na parę sprężonš i rozprężajšc się w miarę zwiększania się komory rozprężnej wykonuje dodatkowš pracę mechanicznš. Dzięki temu silnik według projektu uzyska sprawno?ć przetwarzania energii cieplnej w mechanicznš o około 40 procent większš od sprawno?ci znanych silników cieplnych. Celem projektu jest opracowanie cieplnego silnika gazowego, w którym ciepło odprowadzane z niego na zewnštrz poprzez układ chłodzenia i układ wydechowy oraz poprzez konwekcję, jest wykorzystane do wytwarzania sprężonego czynnika parowego zasilajšcego silnik parowy. Silnik cieplny gazowo-parowy, zawierajšcy silnik cieplny gazowy wyposażony w układ zasilania paliwem oraz układ wydechowy, charakteryzuje się tym, że silnik cieplny gazowy wraz z układem wydechowym jest umieszczony wewnštrz, stanowišcego chłodnicę tego silnika, wymiennika ciepła, zaopatrzonego w wytwornicę sprężonego czynnika parowego, połšczonš termicznie i mechanicznie z komorami rozprężnymi silnika parowego. Rozwišzanie według projektu pozwala na wykorzystanie jako silnika parowego, komór rozprężnych silnika cieplnego gazowego. W takim przypadku sprężony czynnik parowy w postaci pary przegrzanej, podaje się, w okolicach górnego martwego punktu, poprzez układ sterowania, do komór rozprężnych silnika cieplnego gazowego. Innym możliwym rozwišzaniem jest wtryskiwanie do komór rozprężnych silnika cieplnego gazowego, w okolicach górnego martwego punktu, bardzo goršcej wody o temperaturze około 400 stopni Celsjusza. W tym przypadku, tak naenergetyzowana bardzo goršca woda podawana przez pompę wysokiego ci?nienia, jest wtryskiwana do komór rozprężnych silnika cieplnego gazowego i tam natychmiast zamienia się na parę sprężonš wykonujšcš pracę mechanicznš. Temperaturę silnika SCGP reguluje się proporcjš mocy silnika cieplnego gazowego do mocy silnika parowego pracujšcego w symbiozie z silnikiem cieplnym gazowym. Obieg zamknięty wody przemieszczajšcej wymiennik ciepła a następnie (w postaci pary) silnik parowy, uzyskuje się skraplajšc parę rozprężonš, opuszczajšcš silnik parowy, chłodnicš powietrznš lub pompš ciepła. Wodę do obiegu w silniku parowym i w wymienniku ciepła, można uzyskiwać ze spalanego wodoru lub węglowodorów zasilajšcych silnik cieplny gazowy, poprzez dalsze studzenie spalin opuszczajšcych silnik według projektu (jego wymiennik ciepła), c hłodnicš powietrznš lub pompš ciepła. Silnik cieplny gazowo-parowy dla uniknięcia strat energii i maksymalizowania mocy mechanicznej odbieranej od silnika parowego powinien być izolowany termicznie od otoczenia a chłodzony poprzez odbieranie mocy z silnika parowego. Silnik cieplny gazowo-parowy SCGP powinien być chłodzony tylko wodš przemieszczanš przez wymiennik ciepła, który podnosi temperaturę tej wody od około 80 stopni Celsjusza do około 400 stopni Celsjusza. Zaletš Silnika SCGP w porównaniu ze znanymi silnikami cieplnymi gazowymi jest uzyskanie pracy silnika parowego nie obarczonej wzrostem zużycia paliwa. W silniku SCGP około 50 procent mocy cieplnej spalanego paliwa zamieniana jest ze sprawno?ciš około 40 procent na odbieranš moc mechanicznš z silnika parowego, dlatego sprawno?ć energetyczna silnika SCGP wyniesie około 40 procent (to sprawno?ć znanych silników cieplnych gazowych) plus 20 procent (uzyskanych z mocy silnika parowego 50 razy 40 podzielić, na 100), czyli 60 procent. Możliwa jest również koncepcja silnika SCGP, w której komora spalania pracuje naprzemiennie (cyklicznie) raz jako silnik cieplny gazowy a następnie jako silnik parowy. Taka koncepcja nie ingeruje w proces spalania paliwa. Wymierne efekty ekonomiczne wynikajšce z zastosowania Silnika SCGP zachęcajš do prac zwišzanych z doskonaleniem jego konstrukcji.

Opracował:
mgr inż. Bogumił Staroszczyk.

Oszacowanie wydatku wody 1
Oszacowanie wydatku wody 2

Heat Gas-Steam Engine

The subject of the invention is a heat gas steam engine, containing a gas heat engine equipped with fuel feeding and exhausting systems. In standard gas heat engines the bigger part of energy, about 60%, coming from fuel combustion in the engine is diffused to environment. The dissipation of energy is by hot exhaust gases - such as combustion gases - and also by the cooling system. All that makes heat gas engines relatively low efficient. To achieve better heat conditions in heat gas engines, the drilled exhaust valves filled with salts of sodium are used. Such solution allows for much better heat dissipation from materials of engine combustion chambers. The aim of invention is a construction of a heat gas engine in which the heat carried away by the cooling system, the exhaust system and by convection is used to generate the compressed steam feeding additional steam engine. According to the invention the heat gas-steam engine is equipped in a gas engine, with its fuel feeding and exhausting systems, built-in into the heat exchanger. The exchanger works as a cooler of the gas engine, and as a generator of the compressed steam, which is thermally and mechanically coupled to the steam engine expansion chambers. The compressed steam generator is coupled with heat gas engine expansion chambers with the use of temperature control system. Compressed steam generator is energetically coupled by power control system with the steam engine, whose output shaft is mechanically coupled with the output shaft of the heat gas engine. The compressed steam generator is energetically coupled by power control system with a steam engine, whose working chambers are expansion chambers of the heat gas engine. The solution, according to the invention, allows to use the heat gas engine expansion chambers as a steam engine. In that case the compressed steam medium in a form of overheated steam is delivered, under control, into expansion chambers of the heat gas engine. As the option, the direct hot water injection (temperature 650 K, high pressure) into heat gas engine expansion chambers, can be considered. The injected water immediately turns into compressed steam in engine expansion chambers. The principal effect of the invention is the additional, free steam engine power not burdened with the increase of fuel usage by the heat gas engine. The subject of the invention is illustrated by the example of the heat gas-steam engine presented in Fig 1. The heat gas-steam engine consists of the gas engine (GE) with its exhausting system (ES), built-in into the heat exchanger (HE). The exchanger works as a cooler of the gas engine, and as a compressed steam generator (CSG) thermally and mechanically coupled with steam engine expansion chambers. To keep temperature regime, the compressed steam generator (CSG) is thermally connected by temperature control system (TCS) with heat gas engine combustion chambers. The compressed steam generator (CSG) is connected energetically by the power control system (PCS) with a steam engine (SE). The steam engine forms a separate unit, which shaft (2) is mechanically coupled with the shaft of the heat gas engine (1) and with a hidden steam engine (HSE). In HSE work the heat gas engine expansion chambers are used. Heat gas engine (HGE) is equipped in the fuel feeding system (FFS), controlled by the power control system (PCS), and a fuel tank (3). The heat gas engine can be fueled with a gas trough a suck collector (4). The fuel feeding system (FFS), is responsible for the fuel delivery to the heat gas engine (HGE). The power control system (PCS) controls the delivery of compressed steam into the heat gas engine (HGE) expansion chambers. That way a hidden steam engine (HSE) is realized, which working chambers are heat gas engine (HGE) and/or steam engine (SE) expansion chambers. The main task of the power control system (PCS) is to regulate the balance between the power of the heat gas engine (HGE) and the power of steam and hidden steam engines (SE, HSE) in order to keep the state of thermal equilibrium of the heat engine. The additional task of the power control system (PCS) is to warm-up the heat engine to the exploitation temperature at start. In order to obtain the closed cycle of steam factor, the engine is supplied with a condenser (C), to which depressed steam is lead. The drips from the condenser have still a high temperature and are directed to compressed steam generator (CSG). Additionally the engine is supplied with the heat pump installed between condenser (C) and heat exchanger (HE). The solution presented in the invention due to thermal inertia of the engine body and the heat exchanger, makes possible to run, for a short period of time, only one of the engines (heat gas engine, or steam and/or hidden steam engine). And so in the case of using engine according to the invention in traction vehicles there is a possibility for example: ahead the hill power the vehicle with predominance of power from heat gas engine /which leads to global temperature rise/. With gathered momentum, just on the hill the heat engine can work with maximum power, with predominance of power from steam engines /the global temperature falls/. In such situation, for a moment of time, the total engine power is higher than power of the thermal equilibrium state of the engine, so there is effective usage of traction properties of the vehicle. On the other hand, in urban traffic driving conditions it is possible, for some time, to power the car only from the steam engine with the compressed steam produced from heat energy accumulated during previous activity of the heat gas engine. The big advantage of the idea of the invention is low fuel consumption and low pollution gas emission of the engine.

Patent Claim

1. The heat gas engine, including heat gas engine equipped with fuel feeding and exhausting systems, significant in that, as the heat gas engine (HGE) together with the exhaust system (ES) is located inside the heat exchanger (HE), which is the radiator of the engine and the generator of the compressed steam (CSG), thermally, mechanically and energetically coupled, by the injection of compressed heated steam medium in its liquid or the gas form, with steam engines (steam engine, hidden steam engine) expansion chambers.
2. The engine according to condition 1, significant in that, as the gas engine (GE) expansion chambers and compressed steam generator (CSG) are connected with steam engine expansion chambers by temperature control system in co-operation with power control system.
3. The engine according to condition 1 significant in that, as the compressed steam generator (CSG) is energetically connected by the power control system (PCS) with the steam engine (SE), who's shaft is mechanically, hydraulically and electrically coupled, trough the control system (CS), with the heat gas engine shaft (1).
4. The engine according to condition 1 significant in that, as the compressed steam generator is energetically coupled by power control system (PCS), with the use of simultaneous fuel and compresses heated steam medium injection, with the steam engine (SE), who's working chambers are heat gas engine (GE) expansion chambers.

Scheme

Description abridgement

Subject of the invention is a gas steam heat engine, containing combustion engine equipped with fuel feeding and exhausting systems.
Combustion engine (GE) with exhausting system (ES) is settled inside the heat exchanger being a cooler of this engine equipped with compressed steam generator. Drawing (4 claims)




mgr inż. Bogumił Staroszczyk
Janowskiego St 9 apt 6 . 02-784 Warsaw Research and Development Centre EL-MECH
www.el-mech.pl
Tel. (+48) (22) 4232978; (+48) 606 185 143; e-mail: obr@el-mech.pl

Heat Gas-Steam Engine
The Research and Development Centre EL-MECH has worked out a technological conception of a heat gas-steam engine. Within the cooling system of that engine is operating - nearly gratuitously - a steam engine that enables to save almost 20 % fuel as compared with heat engines (low compression engines; Diesel engines) being in use now-a-days. Since the 16th of April 2003 this Centre is protecting the technological conception of the said heat gas-steam engine by means of notification of Polish patent rights P359734, and the European notification of patent rights - EP044600008.8. At present this Centre is looking for a firm that would make use of those notified patents and that technology in order to set up patent rights protection and to put into practice this engine. The technological idea of a gas-steam engine based on the fact that the heat gas engine together with the exhaust system is placed inside the heat exchanger - being the cooler of this engine - provided with a generator of a compressed steam agent which is thermal and mechanically connected to an expansion chambers of the steam engine. This invented solution allows to use expansion chambers of the heat gas engine as the very steam engine. In this case the compressed steam agent in the form of the superheated steam is led within the area of the upper dead point, by means of the steering system, to the expansion chambers of this heat gas-steam engine. A different possible solution is injecting very hot water with temperature of about 400 C0 into the expansion chambers of the heat gas engine within the area of the upper dead point. In this case this ?energised? very hot water supplied by a high pressure pump is being injected into the expansion chambers of the heat gas engine where it is immediately changed into compressed steam executing thus the mechanical work. The water needed for circulation purposes in the steam engine one may get from the combusted hydrogen, hydrocarbons supplying the heat gas engine by means of further cooling down combustion gases going out of the engine - according to this invention (through its heat exchanger) by means of an air cooler or a heat pump. In order to avoid energy losses and in order to optimise power received from the steam engine, this heat gas-steam engine should be thermal insulated in relation to the surroundings, and should be cooled by power taking from the steam engine.
Evaluation of the Energetic Efficiency of the Heat Gas-Steam Engine

By combustion of 100 kW of the thermal power of fuel in the case of a known gas heat engine with an energy efficiency of 40 % we shall get 40 kW of mechanical power. By thermal insulating the warm and hot parts of this engine, and by cooling down exhaust gases and the gas heat engine by means of compressed steam agent , and by taking into account a 10 % loss of the thermal power of the combusted fuel emitted into the air - the compressed steam agent will take 100 kW - 40 kW - 100 kW x 10 % = 60 kW - 10 kW = 50 kW heat power from the combusted fuel. Out of this 50 kW thermal power taken up by the steam agent in the case of a steam engine with an energy efficiency of 35 % we shall get 50 kW x 35 % = 17.5 kW of mechanical power taken up from the shaft of a steam engine. Consequently, the mechanical power of the presented heat gas-steam engine will be: 40 kW + 17.5 kW = 57.5 kW, thus constituting 57.5 % of thermal power of the combusted fuel. And this means that the energetic efficiency of the heat gas-steam engine is - 57,5% .

The note has prepared by mgr inż. Bogumił Staroszczyk

Osoby, Firmy zainteresowane wykonaniem prototypu proszę o kontakt
Szablon by Sliffka